References

Studies within SIDB

Entries in SIDB are from the following publications:

  • Andrews, J. A., Matamala, R., Westover, K. M., & Schlesinger, W. H. (2000). Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biology and Biochemistry, 32(5), 699–706. doi:10.1016/s0038-0717(99)00206-0
  • Arevalo, C. B. M., Chang, S. X., Bhatti, J. S., & Sidders, D. (2012). Mineralization Potential and Temperature Sensitivity of Soil Organic Carbon under Different Land Uses in the Parkland Region of Alberta, Canada. Soil Science Society of America Journal, 76(1), 241. doi:10.2136/sssaj2011.0126
  • Barrett, J. E., Virginia, R. A., Parsons, A. N., & Wall, D. H. (2006). Soil carbon turnover in the McMurdo Dry Valleys, Antarctica. Soil Biology and Biochemistry, 38(10), 3065–3082. doi:10.1016/j.soilbio.2006.03.025
  • Bracho, R., Natali, S., Pegoraro, E., Crummer, K. G., Schädel, C., Celis, G., … Schuur, E. A. G. (2016). Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biology and Biochemistry, 97, 1–14. doi:10.1016/j.soilbio.2016.02.008
  • BRADFORD, M. A., WATTS, B. W., & DAVIES, C. A. (2010). Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Global Change Biology, 16(5), 1576–1588. doi:10.1111/j.1365-2486.2009.02040.x
  • Bradley-Cook, J. I., Petrenko, C. L., Friedland, A. J., & Virginia, R. A. (2016). Temperature sensitivity of mineral soil carbon decomposition in shrub and graminoid tundra, west Greenland. Climate Change Responses, 3(1). doi:10.1186/s40665-016-0016-1
  • Conant, R. T., Steinweg, J. M., Haddix, M. L., Paul, E. A., Plante, A. F., & Six, J. (2008). EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE. Ecology, 89(9), 2384–2391. doi:10.1890/08-0137.1
  • Craine, J. M., Fierer, N., & McLauchlan, K. K. (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3(12), 854–857. doi:10.1038/ngeo1009
  • Dalias, P., Anderson, J. M., Bottner, P., & Couteaux, M.-M. (2001). Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Global Change Biology, 7(2), 181–192. doi:10.1046/j.1365-2486.2001.00386.x
  • Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., … Boeckx, P. (2015). Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 8(10), 780–783. doi:10.1038/ngeo2516
  • Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277–280. doi:10.1038/nature06275
  • GILLABEL, J., CEBRIAN-LOPEZ, B., SIX, J., & MERCKX, R. (2010). Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Global Change Biology, 16(10), 2789–2798. doi:10.1111/j.1365-2486.2009.02132.x
  • Haddix, M. L., Plante, A. F., Conant, R. T., Six, J., Steinweg, J. M., Magrini-Bair, K., … Paul, E. A. (2011). The Role of Soil Characteristics on Temperature Sensitivity of Soil Organic Matter. Soil Science Society of America Journal, 75(1), 56. doi:10.2136/sssaj2010.0118
  • Hopkins, D. W., Sparrow, A. D., Elberling, B., Gregorich, E. G., Novis, P. M., Greenfield, L. G., & Tilston, E. L. (2006). Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry, 38(10), 3130–3140. doi:10.1016/j.soilbio.2006.01.012
  • Karhu, K., Fritze, H., Tuomi, M., Vanhala, P., Spetz, P., Kitunen, V., & Liski, J. (2010). Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology and Biochemistry, 42(1), 72–82. doi:10.1016/j.soilbio.2009.10.002
  • Lavoie, M., Mack, M. C., & Schuur, E. A. G. (2011). Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. Journal of Geophysical Research, 116(G3). doi:10.1029/2010jg001629
  • Neff, J. C., & Hooper, D. U. (2002). Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biology, 8(9), 872–884. doi:10.1046/j.1365-2486.2002.00517.x
  • Niklińska, M., Maryański, M., & Laskowski, R. (1999). Biogeochemistry, 44(3), 239–257. doi:10.1023/a:1006049204600
  • Reichstein, M., Bednorz, F., Broll, G., & Kätterer, T. (2000). Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples. Soil Biology and Biochemistry, 32(7), 947–958. doi:10.1016/s0038-0717(00)00002-x
  • Rey, A., Pegoraro, E., & Jarvis, P. G. (2008). Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST). European Journal of Soil Science, 59(6), 1049–1062. doi:10.1111/j.1365-2389.2008.01065.x
  • SALOMÉ, C., NUNAN, N., POUTEAU, V., LERCH, T. Z., & CHENU, C. (2010). Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology, 16(1), 416–426. doi:10.1111/j.1365-2486.2009.01884.x
  • Sierra, C. A., Malghani, S., & Loescher, H. W. (2016). Interactions among temperature, moisture, and oxygenconcentrations in controlling decomposition rates. Biogeosciences Discussions, 1–11. doi:10.5194/bg-2016-474
  • Song, M., Jiang, J., Cao, G., & Xu, X. (2010). Effects of temperature, glucose and inorganic nitrogen inputs on carbon mineralization in a Tibetan alpine meadow soil. European Journal of Soil Biology, 46(6), 375–380. doi:10.1016/j.ejsobi.2010.09.003
  • Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., & Six, J. (2008). Soil carbon saturation: Evaluation and corroboration by long-term incubations. Soil Biology and Biochemistry, 40(7), 1741–1750. doi:10.1016/j.soilbio.2008.02.014
  • TOWNSEND, A. R., VITOUSEK, P. M., DESMARAIS, D. J., & THARPE, A. (1997). Biogeochemistry, 38(1), 1–17. doi:10.1023/a:1017942918708
  • Wang, X., Li, X., Hu, Y., Lv, J., Sun, J., Li, Z., & Wu, Z. (2010). Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing’an Mountains, Northeastern China. Journal of Environmental Sciences, 22(7), 1057–1066. doi:10.1016/s1001-0742(09)60217-5
  • Wickland, K. P., & Neff, J. C. (2007). Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry, 87(1), 29–47. doi:10.1007/s10533-007-9166-3
  • Winkler, J. P., Cherry, R. S., & Schlesinger, W. H. (1996). The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biology and Biochemistry, 28(8), 1067–1072. doi:10.1016/0038-0717(96)00076-4
  • ZHANG, X., LI, L., & PAN, G. (2007). Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from South China and the temperature dependence. Journal of Environmental Sciences, 19(3), 319–326. doi:10.1016/s1001-0742(07)60052-7